دانلود پایان نامه ارشد درمورد مدل وابستگی و مدل ریاضی


Widget not in any sidebars

(4-3)
که پتانسیل دو جسمی است.
4-3 پتانسیل مدل گاؤسی
این مدل پتانسیل، برای مولکولهایی به کار میرود که مانند مولکولهای بیضیوار دارای تقارن چرخشی حول محور اصلی خود باشند.
تابع گاؤسی زیر را در نظر میگیریم.
(4-4)
(4-5)
که بردار یکه در امتداد محور بیضیوار، ماتریس واحد، سطح ثابت بیضیوار چرخشی حول است که میتواند توزیع ماده در یکی از مولکولهای بیضیوار باشد. محدودهی توزیع ماده در مولکول از تا در امتدادهای موازی و عمود بر محور اصلی میباشد. برای دو مولکول مجاور میتوانیم پتانسیل برهمکنش را با مدل ریاضی همپوشانی دو تابع گاؤسی متناسب بگیریم. این مدل وابستگی برهمکنش دفعی کوتاه برد مولکول به شکل هندسی را بیان میکند.
برای دو بیضیوار دوار، پتانسیل بر همکنش در این مدل عبارت است از:
(4-6)
که ماتریس پارامتر فاصله مربوط به هر مولکول و فاصلهی نسبی مراکز آنهاست. پتانسیل صریحاً به صورت زیر نوشته میشود.
(4-7)
که معرف قدرت برهمکنش و پارامتر فاصله[58] میباشد و با روابط زیر به دست میآیند.
(4-8)
(4-9)
که ناهمسانگردی مولکول برابر است با:
(4-10)
برای مولکولهای با ناهمسانگردی کوچک (ضعیف)، پتانسیل به بسط مرتبهی اول وابسته بوده و مستقل از است و و نیز مستقل از میگردد.
4-3-1 مدل همپوشان گاؤسی سخت
مدل همپوشان گاؤسی سخت، به عنوان مدلی ساده برای مطالعه نظری مایعات با مولکولهای غیر کروی و استفاده در شبیهسازیهای کامپیوتری، معرفی میشود. برن و پکوکاس، برای بررسی برهمکنشهای بین مولکولهای بیضیوار، این مدل را پیشنهاد کردند که در آن قدرت برهمکنش دفعی بین مولکولهای و متناسب با پارامتر فاصله وابسته به جهت مولکولها میباشد[58]. این پتانسیل، معادلهی (4-7)، برای دو مولکول و به صورت پتانسیل دفعی خالص زیر در میآید.
(4-11)
که تابع تماس است که در معادلهی (4-9) بیان شد که در آن همان است. برای مولکولهای با نسبت طول به عرض و واحد طول، پارامتر ناهمسانگردی به صورت زیر نوشته میشود.
(4-12)
در واقع مولکول همپوشان گاؤسی سخت نشان دهندهی برهمکنش مولکولی واقعی نیست بلکه نمایش ریاضی برهمکنش سطحی بین دو جسم غیرکروی است. در نگارهی 4-1 فاصلههای تماس بین مدلهای همپوشانی گاؤسی سخت و بیضیوار دوار نشان داده شده است.