تحقیق رایگان با موضوع مدل‌سازی و تاریخچه


Widget not in any sidebars
شکل ‏32 آسیب نرم [1]
آسیب خزشی
هنگامی که ماده در دمای بالا، مثلا بالای یک سوم دمای ذوب، تحت بارگذاری قرار گیرد، ممکن است تحت تنش ثابت دارای تغییر شکل گردد. در این حالت وقتی کرنش به اندازه‌ی کافی بزرگ شود، گسستگی‌ درون‌دانه‌ای اتفاق می افتد که منجر به پدیده آسیب و افزایش نرخ کرنش خزشی می‌شود. برای مواد نرم، تغییرات آسیب خزشی همانند تغییرات کرنش ویسکوپلاستیک است (شکل 3-3).
شکل ‏33 آسیب خزشی [1]
آسیب خستگی کم‌چرخه
هنگامی که ماده تحت بارگذاری دوره‌ای با مقادیر قابل توجه تنش و کرنش قرار می‌گیرد، آسیب پس از یک تاخیر ناشی از جوانه‌زنی و رشد ریزترک‌ها همراه با کرنش‌های پلاستیک دوره‌ای شروع به رشد می‌کند. به علت مقادیر زیاد تنش‌ها معمولا خستگی کم‌چرخه در تعداد دوره‌های بارگذاری کم رخ می‌دهد (شکل 3-4).
شکل ‏34 آسیب خستگی کم‌چرخه [1]
آسیب خستگی پر‌چرخه
این آسیب هنگامی رخ می‌دهد که ماده در معرض بارگذاری دوره‌ای با مقادیر تنش کمتر از حد تسلیم قرار می‌گیرد. چنین آسیبی در تعداد دوره‌های بارگذاری زیاد رخ می‌دهد(شکل 3-5).
شکل ‏35 آسیب خستگی پر‌چرخه [1]
به کمک تئوری آسیب می‌توان مواد مختلف را تحت بارگذاری‌های متفاوت مدل‌سازی نمود. مدل‌‌های مختلف رشد آسیب امکان مدل‌سازی رفتار ماده را تحت شرایط مختلف میسر می‌سازند. با آگاهی از تاریخچه تنش و کرنش و انتگرال‌گیری از معادلات متشکله ماده با شرایط مرزی مناسب می‌توان رفتار حاکم بر رشد آسیب در ماده تا شکل‌گیری ترک‌های ماکروسکوپی و زمان متناظر آن را محاسبه نمود. امروزه مکانیک آسیب به عنوان ابزاری مناسب و قوی برای طراحی و تخمین عمر سازه‌ها به‌کار می‌رود.
مفاهیم پایه
پارامتر آسیب
اولین گام در پیشبرد تئوری آسیب، معرفی و تعریف پارامتر آسیب می‌باشد. با توجه به گستردگی حالات ممکن، تعاریف متفاوتی برای متغیر آسیب بیان شده است. بر پایه تعریف ارائه شده توسط کاچانف، متغیر آسیب متناظر با چگالی سطح مؤثر حفره‌ها در نظر گرفته می‌شود (شکل 3-6). به این ترتیب در یک حجمک نماینده، اگر مساحت سطح مقطع المان باشد که با بردار نرمال تعریف شود و مساحت ریزحفره‌ها و ترک‌ها روی این سطح مقطع باشد، آن‌گاه متغیر آسیب متناظر با بردار نرمال به‌صورت زیر تعریف می‌شود[1].
(‏32)
شکل ‏36 آسیب فیزیکی و مدل آسیب پیوسته ریاضی [51]
اگر آسیب را همسانگرد در نظر بگیریم، آن‌گاه متغیر آسیب دیگر به جهت بردار نرمال بستگی نداشته و یک کمیت اسکالر است.
(‏33)
از رابطه بالا واضح است که برای هیچ‌گونه آسیبی رخ نداده است و برای المان دچار گسیختگی کامل (شکست حجمک نماینده به دو قسمت) شده است. البته در واقعیت شکست ماده به ازای مقدار کمتر از یک رخ می‌دهد (برای فلزات است) که پارامتر بحرانی آسیب می‌باشد.
مفهوم تنش مؤثر
در وضعیت بارگذاری تک‌محوره در المان بدون آسیب، اگر نیروی F بر روی سطح اعمال گردد، تنش تک‌محوره نرمال به ‌صورت تعریف می‌گردد (شکل 3-7). در این حالت سطح مؤثر (سطح واقعی که تنش را تحمل می‌کند) برابر است با:
(‏34)
شکل ‏37 مفهوم سطح مقطع مؤثر [11]
بدین ترتیب تنش مؤثر به صورت تنش متناظر با سطح مؤثر به شکل زیر تعریف می‌گردد:
(‏35)
البته لازم به ذکر است که در حالت فشار، اگر بعضی از ترک‌ها و ریزحفره‌ها بسته شوند، در این صورت سطح مؤثر برای تحمل تنش، بیشتر از خواهد بود.
در حالت بارگذاری سه‌بعدی و با فرض همگن و همسانگرد بودن ماده، معادله (3-5) به‌ صورت تانسور تنش تعریف می‌گردد: