تحقیق رایگان با موضوع قوانین حاکم و پایان نامه

تنش ویسکوز
تنش تسلیم
Widget not in any sidebars

چگالی انرژی ذخیره‌شده
نرخ چگالی انرژی ذخیره‌شده
آنتا‌لپی آزاد مخصوص گیبس
تابع انرژی پتا‌نسیل الاستیک
تابع انرژی پتا‌نسیل پلاستیک
تابع انرژی پتانسیل گرمایی
مقدمه
مقدمه
مقدمه
توربین‌های گاز یکی از اجزای بسیار مهم برای تولید انرژی در صنایعی نظیر هوافضا، دریانوردی، نفت و نیروگاه‌های حرارتی می‌باشند و کاربرد آنها در صنایع مختلف روز‌به‌روز در حال گسترش می‌باشد. بنابراین مطالعه و بررسی ابعاد مختلف توربین گاز به منظور استفاده بهینه و توسعه آن، امروزه در مراکز تحقیقاتی دنیا اهمیت ویژه‌ای پیدا کرده است. با توجه به اینکه توربین‌های گاز در شرایط کاری در برابر دما و نیروهای بسیار زیاد قرار می‌گیرند، دارای عمر محدودی هستند. بنابراین نیاز است که بتوان عمر اجزای آن را پیش‌بینی نمود. توانایی در انجام تخمین عمر ما را قادر به استفاده بهینه از تجهیزات مهندسی می‌کند که دارای مزایای اقتصادی بسیار زیادی می‌باشد.
یکی از اجزای بسیار مهم و اساسی توربین گاز، روتور آن می‌باشد که در معرض تنش‌ها و دماهای بسیار زیاد قرار دارد. این شرایط کاری بحرانی دما و تنش بالا باعث می‌گردد که مکانیزم‌های تخریب مختلفی بر روی روتور اعمال شده و در نتیجه روتور به مرور زمان دچار زوال و افت خواص شود.
در زمینه علل واماندگی روتور، تحقیقات متعددی صورت گرفته است و مهمترین مکانیزم‌های تخریب آن از جمله خزش، خستگی، اکسیداسیون و خوردگی از لحاظ ریزساختاری و فیزیکی بررسی شده‌اند. همچنین اثر متقابل این واماندگی‌ها که می‌تواند ناشی از اثر همزمان دو یا بیشتر این عوامل باشد، بررسی شده است. بر اساس نتایج حاصل، اندرکنش خزش-خستگی از جمله مهمترین علل واماندگی در روتور توربین گاز می‌باشد. این پدیده که ناشی از شرایط کاری سخت دما بالا و تنش‌های زیاد می‌باشد عمر روتور را محدود می‌کند. ترکیب تنش و دمای زیاد باعث بروز پدیده خزش شده و گرادیان‌های شدید دمایی باعث خستگی حرارتی می‌گردند. بنابراین مهمترین مکانیزم‌های تخریبی که در زوال روتور و در نتیجه کاهش عمر آن نقش دارند عبارتند از خستگی حرارتی، خزش و اندرکنش آن‌ها.
بر خلاف سایر قطعات توربین مانند پره‌ها و اتصالات، واماندگی روتور در حین عملیات می‌تواند خسارات جبران‌ناپذیر و سنگینی را به کل مجموعه توربین وارد کند. بنابراین سازندگان و کاربران توربین‌‌ها همواره در تلاش بوده‌اند تا بتوانند عمر مفید روتور را تشخیص داده و در زمان مناسب اقدام به تعمیر و در صورت لزوم تعویض آن کنند. علاوه بر این، تعویض روتور می‌تواند هزینه‌های سنگینی را متوجه نیروگاه‌ها کند. با توجه به این مطالب،‌ روشن می‌شود که تخمین دقیق‌تر عمر روتور به منظور استفاده بهینه از آن همواره از موارد مورد تحقیق پژوهشگران بوده و می‌تواند کمک شایان توجهی به کاهش هزینه‌ها در صنعت‌ کند. بنابراین آگاهی کامل و دقیق از مکانیزم‌های شکست و از کار افتادگی قطعات توربین به خصوص روتور، یک ضرورت محسوب می‌شود و می‌تواند با تخمین بهینه عمر، منجر به صرفه‌جویی اقتصادی قابل ملاحظه‌ای شود. از این دیدگاه،‌ اهمیت بحث تخمین عمر روتور توربین گاز روشن می‌شود.
لازم به ذکر است که پیشرفت‌های چشمگیر در زمینه تکنولوژی ساخت توربین‌های گاز موجب شده است که قسمت‌های مهم و دوار اجزای نیروگاه‌ها مانند روتور و اجزای توربین‌، تحت بارهای کاری و دماهای بسیار بالاتری نسبت به گذشته به‌کار گرفته شوند که این امر بر ضرورت گسترش تحقیقات جدید در این زمینه دلالت دارد.
مکانیک آسیب پیوسته
آسیب ماده یک فرایند فیزیکی است که طی آن ماده تحت بارگذاری دچار کاهش و زوال خصوصیات مکانیکی می‌شود و در نهایت می‌شکند. تضعیف ماده ناشی از پیدایش و رشد ریزترک‌ها و ریزحفره‌ها در بافت ماده است. علم مکانیک آسیب، علم مطالعه متغیرهای مکانیکی دخیل در این فرایندها در ماده تحت بارگذاری می‌باشد. بر خلاف ماهیت ناپیوسته‌ی آسیب، تئوری مکانیک آسیب پیوسته می‌کوشد تا رشد و گسترش این ناپیوستگی‌ها را در یک چارچوب پیوسته مدل‌سازی کند که این کار را با تعریف یک متغیر داخلی در محیط پیوسته انجام می‌دهد[1]. می‌توان گفت اگر مکانیک شکست که علم بررسی و مدل‌سازی ناپیوستگی‌ها است را بتوان در چارچوب مکانیک پیوسته کلاسیک بیان نمود، به سمت مکانیک آسیب پیوسته رهنمون می‌شویم. در واقع هدف از گسترش مکانیک آسیب پیوسته پر نمودن فاصله موجود بین مکانیک پیوسته کلاسیک و مکانیک شکست می‌باشد. در دهه‌های اخیر تحقیقات زیادی بر روی مدل کردن فرآیند آسیب صورت گرفته، و تاکنون مدل‌های آسیب پیوسته‌ی متنوعی برای توصیف چنین پدیده ای در چارچوب مکانیک آسیب، ارایه شده است.
با وجود اینکه اصول و مفاهیم پایه مکانیک آسیب سابقه‌ای طولانی دارد، اما گسترش آن به خصوص برای مواد نرم در دهه‌های اخیر رخ داده است و از این جهت یک زمینه‌ی نسبتاً نو در علوم مکانیک به شمار می‌رود. در حال حاضر، مکانیک آسیب به عنوان یکی از مناسب ترین روش‌ها برای ارزیابی شکست در مواد نرم شناخته شده است[2].
هدف از انجام پژوهش
هدف از انجام این پژوهش، تحلیل تنش‌های مکانیکی و حرارتی برای یک نمونه روتور توربین گاز می‌باشد. روتور توربین گاز در شرایط کاری تحت گرادیان‌های شدید دمایی و تنش‌های بسیار زیاد قرار می‌گیرد که منجر به
ایجاد مکانیزم‌های زوال در روتور می‌شوند. می‌توان از پدیده خزش در اثر ترکیب دما و تنش‌های زیاد و همچنین پدیده خستگی حرارتی در اثر تغییرات دما به عنوان مهمترین مکانیزم‌های آسیب در روتور نام برد. با توجه به اینکه دو پدیده خزش و خستگی همزمان رخ می‌دهند، بنابراین ضروری است در تحلیل تنش‌ روتور اثرات این دو پدیده به‌طور همزمان در نظر گرفته شوند. در این پژوهش از تئوری مکانیک آسیب پیوسته برای تحلیل تنش استفاده شده است، زیرا این تئوری توانایی این را دارد که اندرکنش خزش-خستگی را در نظر بگیرد.
با توجه به هندسه پیچیده روتور و بارگذاری مختلط آن، در این پژوهش برای تحلیل تنش‌های مکانیکی و حرارتی روتور، از نرم افزار المان محدود ABAQUS استفاده شده است.
همچنین با توجه به اینکه برای تحلیل تنش، نیاز به تعیین خصوصیات مکانیکی روتور موردنظر می‌باشد، با انجام آزمایش‌های مختلف بر روی ماده موردنظر، خصوصیات مکانیکی ماده تعیین شده‌اند.
چکیده مباحث مطرح شده در این پایان‌نامه
پس از بیان مقدمات و هدف از انجام این پایان نامه، در فصل دوم به بررسی پژوهش‌های انجام شده در زمینه مکانیک آسیب و مدل‌های ارایه شده برای در نظر گرفتن اندرکنش خستگی و خزش پرداخته شده است.
در فصل سوم، مفاهیم اساسی مکانیک آسیب و قوانین حاکم بر پدیده آسیب معرفی شده‌اند و معادلات حاکم بر مسئله نیز بیان شده‌اند. سپس به بررسی اجمالی روش‌های اندازه‌گیری آسیب و نحوه استخراج پارامترهای لازم برای ماده موردنظر پرداخته شده است.
در فصل چهارم، شرایط کاری و هندسه روتور توربین گاز بیان شده است و چگونگی مدل‌سازی آن در نرم‌افزار ABAQUS شرح داده شده است.